Ultra-Low Noise Xtal Multiplied Unit

Available for any frequency between $200 \mathrm{MHz} \mathbf{- 1 2 \mathrm { GHz }}$

TYPICAL APPLICATIONS

- Radar Systems
- System Master Clock
- Quantum Computing System Clock
- Test and Measurement

GENERAL DESCRIPTION

Linwave's XMU range of fixed frequency Ultra Low Noise Multiplied Crystal Oscillator Modules are designed for very high-performance applications requiring phenomenally low phase noise performance. The devices can be used in a multitude of differing applications with the added advantage of improved vibration performance due to its multi-crystal dualaxis design and ultra-low noise multiplication techniques. This device is particularly ideal for RADAR and Quantum applications, offering industry leading phase noise performance. The modules output frequency is customised for each application with solutions available at any fixed frequency in the range 200 MHz to 12 GHz . Optional additional features such as ability to lock to an external reference frequency and multiple low-noise outputs can be made available upon request.

PRODUCT FEATURES

- Industry Leading Ultra Low Phase Noise Performance -158dBc/Hz floor at 5.6 GHz
- Multi-Crystal Oscillator with internal oven for improved vibration performance of $7.9 \mathrm{E}-11 / \mathrm{g}$
- Output power of +16 dBm output into 50Ω
- Built-In Input Power Supply BITE
- Simple RS-422 Electronic Tuning capability, typical tuning lifetime > 525,000 Hours
- High Reliability and Ruggedness MTBF > 50,000 Hours
- $\mathbf{\pm 1 2 \mathrm { V }}$ input with low noise regulation for increased PSRR
- Integrated Integer Multiplier Stages

- LINWAVE

ELECTRICAL CHARACTERISTICS - Operational $\quad T_{A}=21^{\circ} \mathrm{C},+/-12 \mathrm{~V} D, 50 \Omega$ System (unless otherwise noted)

PARAMETER	MIN	TYP	MAX
Output Return Loss	10		
Isolation between RF Output ports	50		
Current Consumption - Warm-up (10mins max)		+2.5	
Current Consumption - Steady State		+1.5	
Second Harmonic Emissions	-60	-70	
Third Harmonic Emissions	-80		A
Higher Harmonic Emissions	-80		
Non-Harmonic Spurious Emissions		-80	-75

CONTROL CHARACTERISTICS AND ADVANCED FEATURES

PARAMETER	VALUE
Built-In Test Functions	DC Input Voltage
Input Voltage BIT	True $= \pm 12 \mathrm{~V}$ Nominal ($\pm 5 \%)$ False $=< \pm 10.8 \mathrm{~V}$ to $\pm 13.2 \mathrm{~V}$ Accuracy: $\pm 5 \%$
Electronic Tuning Control	RS-422 via front panel 9-way Micro D (Socket)

MECHANICAL CHARACTERISTICS

PARAMETER	VALUE	UNITS
Dimensions (excluding connectors)	$212(8.35) \times 156(6.15) \times 36(1.42)$	$\mathrm{mm}(\mathrm{in})$
Mass	2000	g
RF Connectors	SMA Female	-
DC In	Via rear 25-way Micro D connector (Socket)	-
PSU BIT RS-422 Output	Via rear 25-way Micro D connector (Socket)	
Electronic Tuning Control RS-422 Input	Via front 9-way Micro D connector (Socket)	-
Cooling Method	External Heatsink to Baseplate (Not Supplied)	-

ENVIRONMENTAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNITS
Case or Baseplate Temperature	+18		+22	${ }^{\circ} \mathrm{C}$
Humidity	10	90	$\%$	
Altitude		30,000	ft	
Vibration	2 to $14 \mathrm{~Hz}, \pm 1 \mathrm{~mm}$ peak in any plane			
	14 to $100 \mathrm{~Hz}, 0.8 \mathrm{~g}$ in any plane			
Shock	1.8 g peak in any plane, 25 ms half sine			
Ingress Protection	IP66			

PERFORMANCE DATA

Output Frequency (MHz)	$\mathbf{1 0 H z}$	$\mathbf{1 0 0 H z}$	$\mathbf{1 K H z}$	$\mathbf{1 0 K H z}$	$\mathbf{1 0 0 K H z}$	$\mathbf{1 M H z}$	Floor	Output Power (typ)	Supply Voltage	Output Connector	Acceleration Stability (/g)
200	-102.5	-137	-161	-179	-181	-181	-181	+22 dBm	$\pm 12 \mathrm{~V}$	SMA(f)	7.9×10^{-11}
600	-93	-128	-152	-171	-172	-172	-172	+16 dBm	$\pm 12 \mathrm{~V}$	SMA(f)	7.9×10^{-11}
900	-88	-122	-148	-163	-167	-168	-172	+16 dBm	$\pm 12 \mathrm{~V}$	SMA(f)	7.9×10^{-11}
1800	-84	-117	-141	-154	-156	-158	-172	+16 dBm	$\pm 12 \mathrm{~V}$	SMA(f)	7.9×10^{-11}
3600	-78	-112	-136	-150	-153	-154	-165	+16 dBm	$\pm 12 \mathrm{~V}$	SMA(f)	7.9×10^{-11}
5600	-73	-107	-132	-146	-150	-150	-158	+16 dBm	$\pm 12 \mathrm{~V}$	SMA(f)	7.9×10^{-11}
9000	-69	-103	-128	-142	-144	-144	-150	+12 dBm	$\pm 12 \mathrm{~V}$	SMA(f)	7.9×10^{-11}
11000	-66	-100	-125	-139	-143	-143	-143	+10 dBm	$\pm 12 \mathrm{~V}$	SMA(f)	7.9×10^{-11}

A ALARIS

OUTLINE DRAWING

